Optimization Study of Supercritical Fluid Extraction of Cannabinoids from *Cannabis sativa*

Eric Kawka | Founder
Cattis Scientific
How They **REALLY** Made the Periodic Table...
Appreciating the Complexity of Cannabis Sativa

100 + Cannabinoids

200 + Terpenes

Endocannabinoid system
300 Receptors

Each receptor can accept multiple compounds

\[nCr = \frac{n!}{r!(n - R)!} \]
The California Cruiser

Cannabinoids

- THC (tetrahydrocannabinolic acid)
- THCA (tetrahydrocannabinolic acid)
- CBD (cannabidiol)
- CBDA (cannabidiolic acid)
- CBG (cannabigerolic acid)
- CBC (cannabichromenic acid)
- CBGVA (cannabigerovarinic acid)

Terpenes

- Δ9-THC (tetrahydrocannabinol)
- Δ8-THC (tetrahydrocannabinolic acid)
- β-Caryophyllene
- β-Pinene
- α-Pinene
- Limonene
- Myrcene
- Ocimene
- Pinene
- Linalool
- Geraniol
- Camphene
- Terpinolene
- Carvacrol
- Terpinen-4-ol
- Pinocarveol
- Sabinene

© 2019 Emerald Conference, All Rights Reserved
Overview

• Review of select prior work on cannabinoid extraction utilizing Supercritical SC-CO₂ and co-solvents
• Extending the boundaries of cannabinoid extraction with SC-CO₂ by altering CO₂ flow
• Future optimization work
Scale-up Study of Supercritical Fluid Extraction Process for Clove and Sugarcane Residue

- Presents overall extraction curves (OEC’s) for clove and sugar cane at different pressures.
- Optimize a scale up of clove and sugarcane from 250mL to 5.15 L by maintaining S/F ratio.

Fig. 1. OECs for clove (a) and sugarcane residue (b) at LS 1 (○), LS 2 (○), PS 1 (○) and PS 4 (○).

J.M. Prado et al. / J. of Supercritical Fluids 56 (2011) 231–237
Cannabinoid Solubility Data in SC-CO$_2$

- CBD >> CBDa
- CBDa >> THCa
- THC >> THCa

H. Perrotin-Brunel et al.
J. of Supercritical Fluids
55 (2010) 603–608
The use of ethanol as a co-solvent was investigated with two different approaches:

1. constant co-solvent flow
2. pulses of ethanol at different times though the extraction procedure

Process extraction efficiency as high as 92% was achieved.
Terpenes and Cannabinoids are Synthesized and Stored in Trichomes
SC-CO$_2$ Efficiency Curve

- Mechanical region
- Diffusion limited region

g COI vs. time

- $\text{CO}_2 + \text{COI}$
- $\text{CO}_2 + \text{COI}$
Mass Transfer – CO$_2$ Flow Rate

Low CO$_2$ Flow

Higher CO$_2$ Flow

rate, g/min COI

time

© 2019 Emerald Conference, All Rights Reserved
Like a Fine Cup of Java.....

Soak for 4 minutes and repeat

Static / dynamic approach to boost efficiency in the diffusion limited region of the efficiency curve
Instruments Used in Optimization Study

Water’s Acquity UPC2

Water’s Bio Botanical Extractor (BBES)
Dynamic / Static Experimental Set Up

SFE Conditions
1. 250 Bar, 50C, **Dynamic Run**
2. 250 Bar, 50C, **Dynamic/Static**
 time constant
3. 250 Bar, 50C, **Dynamic/Static**
 S/F constant

BoAx → Homogenized 25 pounds → 5 Liter Vessel

13.47 % CBDa
<table>
<thead>
<tr>
<th>Dynamic/Static</th>
<th>Step</th>
<th>Co-Solvent Flow (g/min)</th>
<th>CO2 Flow (g/min)</th>
<th>Extraction Vessel 1 Temp (°C)</th>
<th>Cyclone Vessel 1 Temp (°C)</th>
<th>Cyclone Vessel 2 Temp (°C)</th>
<th>Cyclone Vessel 3 Temp (°C)</th>
<th>Inline Heater Temp (°C)</th>
<th>Inline Collection Heater Temp</th>
<th>Extraction Pressure (bar)</th>
<th>Dynamic Duration 1 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>1</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>550</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td>Dynamic</td>
<td>9</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>60</td>
</tr>
</tbody>
</table>
Experiment 1: Dynamic Versus Dynamic/Static

<table>
<thead>
<tr>
<th>Ext. #</th>
<th>Description</th>
<th>g CBD avail. (total potential)</th>
<th>time, min.</th>
<th>g CO₂</th>
<th>s/f</th>
<th>g CO₂ / g CBD</th>
<th>g CBD extracted (total potential)</th>
<th>Extraction Efficiency %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dynamic</td>
<td>215</td>
<td>540</td>
<td>108,124.00</td>
<td>59.19</td>
<td>731</td>
<td>148</td>
<td>69</td>
</tr>
<tr>
<td>2</td>
<td>Dynamic Static, time constant</td>
<td>223</td>
<td>540</td>
<td>75,376.50</td>
<td>39.72</td>
<td>608</td>
<td>124</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Dynamic / Static, S/F constant</td>
<td>216</td>
<td>650</td>
<td>109,097</td>
<td>59.13</td>
<td>572</td>
<td>191</td>
<td>88</td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th></th>
<th>#1</th>
<th>#2</th>
<th>#3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>Dynamic/Static, time constant</td>
<td>Dynamic/Static, S/F constant</td>
<td></td>
</tr>
<tr>
<td>%CBDa TOP</td>
<td>2.73</td>
<td>4.38</td>
<td>1.05</td>
</tr>
<tr>
<td>%CBDa MID</td>
<td>1.06</td>
<td>2.44</td>
<td>0.73</td>
</tr>
<tr>
<td>%CBDa Bottom</td>
<td>1.03</td>
<td>0.82</td>
<td>0.64</td>
</tr>
</tbody>
</table>
Dynamic

Dynamic/Static, time constant

Dynamic/Static, S/F constant

© 2019 Emerald Conference, All Rights Reserved
Extraction Economics

<table>
<thead>
<tr>
<th>Extraction</th>
<th>g CBD remaining in raffinate</th>
<th>$ remaining in raffinate</th>
<th>$ normalized to 90% efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic</td>
<td>67</td>
<td>$2,345.00</td>
<td>$1,470.00</td>
</tr>
<tr>
<td>Dynamic / Static, Extraction time constant</td>
<td>99</td>
<td>$3,465.00</td>
<td>$2,590.00</td>
</tr>
<tr>
<td>Dynamic / Static, S/F constant</td>
<td>25</td>
<td>$875.00</td>
<td>$0.00</td>
</tr>
</tbody>
</table>

$1,470 / 5 L extraction run X 10 L /day X 5 days = $14,700 / week
A: Grams CBD/CBD-A yielded over time
B: Rate of extraction; total potential CBD /minute

15 min Soak

[Graph showing the extraction process over time with different markers for CBD and CBDA]
Adjust Soak Time While Maintaining S/F

<table>
<thead>
<tr>
<th>Step</th>
<th>Co-Solvent Flow (g/min)</th>
<th>CO2 Flow (g/min)</th>
<th>Extraction Vessel 1 Temp (°C)</th>
<th>Cyclone Vessel 1 Temp (°C)</th>
<th>Cyclone Vessel 2 Temp (°C)</th>
<th>Cyclone Vessel 3 Temp (°C)</th>
<th>Inline Heater Temp (°C)</th>
<th>Inline Collection Heater Temp (°C)</th>
<th>Extraction Pressure (bar)</th>
<th>Dynamic Duration 1 (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>55</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>20</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>5</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>30</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>200</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>35</td>
<td>50</td>
<td>35</td>
<td>250</td>
<td>70</td>
</tr>
</tbody>
</table>

Extraction time:
650 min

Grams CO₂:
107,625

Starting mass:
1820g

S/F:
59.13

Efficiency 90 %
Future Experiment: Beyond 5 Liters
Conclusion

A 30% efficiency boost is observed with a static/dynamic approach in the diffusion limited region of the efficiency curve.
Thanks to:

• Andy Aubin
• Shawn Helmueller
• John A. MacKay, PhD
• Emerald Conference
Thanks to:

YOU!